Pear Tree Primary School incorporating Pips Before and After School Club

PEAR TREE IN PARTNERSHIP

Calculation Policy

Date agreed	September 2021
Date for Review	Matthew Greasby
Authors: Reviewed by:	Date:
Signed on behalf of the Governing Board by: Name:	Signature:
Signed on behalf of the school by: Boo Edleston Headteacher	Signature:

This policy outlines what we do at Pear Tree School to teach calculation. We support children in order to broaden, deepen and apply their calculation knowledge. Maths is not about number but about life. It is about the world in which we live. It is about ideas. We need to make maths exciting and meaningful for the children we teach.

By teaching mathematics creatively inside and out of the classroom we enable the children to become enthused and interested. This in turn has a positive impact on their mind-set and feelings towards maths.

For each year group, the teacher assesses that the children have understood each process and strategy before moving on to the next stage in their learning. We understand that children learn at different rates and that not all children will be using the same strategy at the same time.

We encourage children to use a range of vocabulary to support their understanding of the process used in calculating. In all the methods of calculation it is important to encourage the children to estimate their answers.

All the time we are also encouraging the use of mental calculation as being able to calculate mentally is an important part of mathematics. Since multiplication and division, addition and subtraction are inverse operations they should be taught alongside each other rather than as separate entities. It is important that children are taught to appreciate and make use of these mathematical relationships when developing and using mental calculation strategies.

As calculations become more complex, written methods become more important. Recording in mathematics and in calculation in particular, is an important tool both for furthering the understanding of ideas and for communicating those ideas to others. A useful written method is one that helps children carry out a calculation and can be understood by others.
At each stage of their learning the children are encouraged to use manipulatives to help support their learning. Once the children become familiar with the different types of manipulatives in their classroom they will then start to take responsibility and choose the most appropriate one to help them with their calculation.

When using or applying calculation strategies children will be encouraged to consider what will be the most efficient and reliable way of doing the calculation:

Can I do this in my head?
Can I do this in my head using drawings or jottings?
Can I get something to support me with this calculation?
Do I need to use a written method?
Do I need a calculator?

Teaching for mastery

Children will learn through teaching for mastery. Maths mastery relies on classroom practice and school organisation to give pupils a deep, long-term, secure and adaptable understanding of maths. Mastery is a long-term, cumulative approach. Maths understanding, knowledge and skills are systematically deepened and built-upon yearly.

All classes will follow the same lesson structure to ensure consistency in teaching and learning:

1) Exploration - A whole class investigational type question (this may sometimes form the whole lesson depending on how discussions / learning progresses) This relates to the lesson objective.
2) Structure learning - Specific lesson focus using concrete resources and whiteboards.
3) Practice and apply - Fluency questions in maths books, both pictorial and abstract
4) Extension / deepening understanding - A chance to prove and explain.

Within the 'Explorations', children will work in mixed ability pairings to answer questions. They will draw, show, explain and prove how they have arrived at an answer and will have opportunities to 'talk maths'.
Questions to prompt thinking before attempting questions are highlighted below:

1) What am I trying to find out?
2) Have I seen a problem like this before? If so, where and why is it similar?
3) What else do I need to know before I get started?
4) What strategies or resources could I use to help me?

As a non-negotiable, where appropriate, classes will complete 3 paper sessions of Times Table Rockstars per week. Children will be distributed with logins to the TTRS website and parents will be encouraged to support their child on the use of this at home.

Addition

hundred squares and other material to visually support their addition.		partition partitioning
Children begin working with two digit numbers and to record mental methods using partitioning. It is vital that this stage the children should have a secure knowledge of place value. Add the tens and then the ones to form partial sums and then add these partial sums. Partitioning both numbers into tens and ones mirrors the column method where ones are placed under ones and tens under tens. This also links to mental methods. Partitioned numbers can then be written under one another. Partitioning is also a very useful strategy when beginning to add 3 -digit numbers together. These stages should be supported using concrete apparatus such as Base 10 (Dienes), leading on to Place Value Counters. Use place value grids to show the importance of keeping the numbers in the correct columns	Record steps in addition using partitioning: a) $\begin{aligned} & 47+76=123 \\ & 47+70=117 \\ & 117+6=123 \end{aligned}$ b) $\begin{aligned} & 47+76=123 \\ & 40+70=110 \\ & 7+6=13 \\ & 110+13(10+3)=123 \end{aligned}$ $\begin{array}{r} 47=40+7 \\ +\underline{76}=\frac{70+6}{110+13}=123 \end{array}$	near doubles strategy running total mental calculations place value

Children continue working with two digit numbers and set their work out using the expanded method in columns, making sure they line their relative place value columns up. They add the ones first and then the tens. Their understanding of place value can help them to add the final section together mentally. Number lines, hundred squares and other materials can still be used to visually support the child.	$\begin{array}{r} 25 \\ +31 \\ \hline 6 \\ 50 \\ \hline 56 \end{array}$	
Children continue this strategy. Moving on to bigger numbers such as, three digit plus 2 digit addition or with four digit numbers. Children may need to add with partitioning more than once to help them add the final number mentally more easily.	$\begin{array}{r} 4301 \\ +2973 \\ \hline 4 \\ 70 \\ 1200 \\ 6000 \\ \hline 7274 \end{array}$	sum addition total altogether rounding partitioning decimals columns

As a final strategy, children are taught to condense their addition into a single step column method by regrouping the digits which cross the tens / hundreds boundary.	258	12.3	
This strategy will help them to add decimal numbers.	$\frac{359}{11}$	$+\underline{27.9}$	Regrouping

Subtraction

Stages of learning	Subtraction	Examples of what it looks like	Vocabulary
Children begin to practically remove objects from a group and use oral work to begin to understand the concept of subtraction.	Songs, stories and drama will be used for children to act out and represent the subtraction taking place.	take how many left less	
Children will draw pictures or symbols and then cross them off to begin solving and recording subtraction problems.	S		

Children begin to use horizontal number lines
to subtract. They will start at the highest
number and count back.
They will also use a horizontal number line to
find the difference. They will start at the lowest
number and count up to the highest number to
find the answer.
They will be encouraged to do this mentally
from $0-10$ and then later from $0-20$.

Children are beginning to subtract bigger
numbers up to 100, recording their work on
empty number lines.
They will use the subtraction method of
counting back from the biggest number.

This requires children to subtract a single-digit
number or a multiple of 10 from a two-digit
number mentally. The method of recording
links to counting back on the number line.
Complementary addition - they will also use a
number line to find the difference/How many
more? This can be referred to as the process
as counting on.
This process uses the inverse operation

From the smallest number, they will jump to
the next multiple of 10, then jump in multiples
of 10, then add on the ones.

Children will add the jumps together to find
their answer.

Along with using number lines children will use partitioning to subtract. It'll be recorded using partitioning to write equivalent calculations that can be carried out mentally.

For 74-27 this involves partitioning the 27 into 20 and 7 , and then subtracting from 74 the 20 and the 7 in turn.

Some children may need to partition the 74 into $70+4$ or $60+14$ to help them carry out the subtraction.

Their understanding of place value can help them to add the final section together mentally.

Partitioning can then become set out in a column formation to get the children ready for column subtraction - decomposition method.

As with addition, subtraction methods should be supported by the use of concrete resources throughout

Subtraction can be recorded using partitioning:
74-27 =
$74-20=54$
$54-7=47$

Partitioned numbers are then written under one another:
Example: 74-27

$$
\begin{array}{rrr}
70+4 \\
-20+7 \\
\hline
\end{array} \quad \begin{array}{r}
60+14 \\
\hline
\end{array} \quad \begin{array}{r}
60+4 \\
\hline 40+7
\end{array} \quad-\frac{27}{47}
$$

Example: 741-367

$$
\begin{array}{rrr}
700+40+1 \\
-300+60+7 \\
\hline
\end{array} \begin{array}{r}
700+430+11 \\
\hline
\end{array} \begin{array}{r}
600+4311 \\
\hline
\end{array}
$$

Children continue to develop their use of the number line for all subtraction work, including larger numbers and decimals.	658	
If they are ready to move on they begin to use the subtraction column method. Children should be confident in their ability to add when using this method.	$\underline{-351}$	
Finally, children are introduced to the decomposition method of column subtraction.	$\underline{307}$	Exchange
For the subtraction 653 - 335, you cannot subtract 5 ones from 3, therefore we exchange a ten from the 50 to add to the 3 ones to make 13 ones. Then the subtraction can continue as normal.	$\underline{64513}$	$\underline{318}$

N.B. These steps focus on the transition from concrete resources, through pictorial before focusing on abstract calculations.

Multiplication

Multiplication		
Stages of learning	Examples of what it looks like	Vocabulary
Children will begin the process of multiplication by counting in groups or patterns in an informal or practical manner.	sets of groups	

Children develop their concept of multiplication as grouping.	e.g. three groups of two:	pattern groups addition lots of
Children will reinforce their concept of multiplication as repeated addition: 5 times 3 is $5+5+5=15$ or 3 lots of 5 or $5 x$ 3 They may use something like a number line to visually support their repeated addition.		repeated addition calculate inverse operation multiply
Children will begin to use arrays to solve simple multiplication calculations and will write these as a number sentence. They will begin to understand that multiplication can be done in any order (commutative)	$3 \times 2=6$ or $2 \times 3=6$ 	arrays inverse equivalent lots of commutative
Children will learn to use the grid method to solve multiplication calculations. Children will partition numbers to multiply. They will use their understanding of place value to multiply multiples of 10 . This strategy will be used for all multiplication, including decimal numbers. Children may	x 30 5 7 210 35$210+35=245$	grid partition hundreds tens ones

need to write a separate addition calculation if their grids extend beyond a single column.	For larger multiplication				
	\times	20	7		
	50	1000	350	1350	
	6	120	42	162	
				1	
Children will then be introduced to the expanded method of multiplication. This is only introduced when the children are confident with the grid method.	Vertica ones: $\begin{array}{r} 46 \\ 46 \\ \times \quad 8 \\ \hline 320 \\ 48 \end{array}$	panded $\begin{aligned} & 40 \times 8) \\ & 6 \times 8) \end{aligned}$	$=36$	ultiplication by	arrays inverse equivalent lots of
Children will finally move onto the more efficient compact method of multiplication. Having gone through all of the above stages, children are confident with long multiplication.					Thousands Hundreds Tens Ones

These methods can be further developed by using bigger numbers (long multiplication) and decimals.

Examples of long multiplication

Children will then be introduced to the expanded method of multiplication. This is only introduced when the children are confident with the TO X O

Vertical compact version for

 multiplication by ones:e.g. 46×8

46
$\times 8$

Expanded method of long multiplication

Expanded version
286
$\times \quad 29$
$4000200 \times 20=4000$
$1600 \quad 80 \times 20=1600$
120
1800
720
54
8294
1

Division

\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{Division}

\hline Stages of learning \& Examples of what it looks like \& Vocabulary

\hline Children will begin the process of division by sharing and grouping in an informal or practical manner. \& \& sets of groups

\hline Children will begin to record their ideas using informal jottings to demonstrate either grouping or sharing. \& \begin{tabular}{l}
Sharing equally

6 sweets shared between 2 people, how many do they each get?

Grouping or repeated addition

There are 6 sweets, how many people can have 2 sweets each?

\end{tabular} \& sharing grouping shared between groups of how many?

\hline
\end{tabular}

Children will relate division and multiplication facts describing them as being the inverse of each other. Arrays may be used to demonstrate this.	$8 \div 2=4$	arrays lots of sharing groups inverse
Children will begin to use a number line to demonstrate division as repeated subtraction. They will initially use a numbered line and count down in the jumps to see how many 'lots of' that number there are.	$8 \div 2=4$ Children will count the number of jumps that have been made.	lots of number line groups of dividing repeated subtraction
Children will use an empty number line to take out bigger chunks when dividing bigger numbers. Children may need to use a separate subtraction calculation to support their repeated subtraction.		chunks dividing lots of groups of chunking

	$24 \div 6=4$ Children will count the number of jumps that have been made.
Children will develop their division number line work into the number line chunking method, taking out chunks of a number that you are dividing by. Children will use this for numbers going over ten times the divisor.	$85 \div 6=14 \text { r } 1$ In this example, using knowledge of multiples, the 84 is partitioned into 70 (the highest multiple of 7 that is also a multiple of 10 and less

Children will condense the number line chunking strategy into a more efficient written method. To be able to master these methods effectively, children need to be able to multiply a single digit by any multiple of 10 in their head.	'Expanded' method for $\mathrm{TO} \div \mathrm{O}$ and $\mathrm{HTO} \div \mathrm{O}$ Short division of TO \div O by chunking multiples of the devisor. $\begin{array}{rrl} 72 \div 3 & =24 & \\ 3 & 72 \\ -\quad 30 & (10 \times 3) \\ -\quad 32 & \\ -\quad 30 & (10 \times 3) \\ -\quad 6 & (2 \times 3) \\ -6 & \\ -\quad 6 & (2 \times 3) \\ 0 & & \\ & \text { Answer }=24 \end{array}$ Short division of HTO \div O by chunking multiples of the devisor. $\begin{array}{\|ccl} 196 \div 6 & =32 r 4 \\ 6 & 196 & \\ & -\frac{180}{16} & (30 \times 6) \\ & -\quad 12 & (2 \times 6) \\ & & \\ & \text { Answer }=32 r 4 \end{array}$	chunks dividing lots of groups of multiples thousands hundreds tens ones

Short hand division methods (bus stop method) are also introduced at this stage. These methods can be further developed by using bigger numbers and decimals (you can express decimals as fractions).	$3 \longdiv { 2 9 ^ { 2 } 1 } \quad \square \bigcirc \bigcirc$ Any remainders should be shown as fractions, i.e. if the children were dividing 32 by 10 , the answer should be shown as $3 / 10$ which could then be written as $31 / 5$ in its lowest terms. Extend to decimals with up to two decimal places. Children should know that decimal points line up under each other.	Bus Stop Method

